organic papers

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Zhiping Yang,‡ Ping Zhong,* Qian Shi, Riyuan Tang and Shuyan Li

Department of Chemistry, Wenzhou Normal College, 325027 Wenzhou, People's Republic of China

Present address: Zhangzhou Vocational and Technical College, 363000 Zhangzhou, People's Republic of China

Correspondence e-mail: zhongp0512@163.com

Key indicators

Single-crystal X-ray study T = 298 KMean σ (C–C) = 0.004 Å R factor = 0.050 wR factor = 0.135 Data-to-parameter ratio = 16.9

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

5-{[(4-Chlorophenyl)methylene]amino}-1-[2,6-dichloro-4-(trifluoromethyl)phenyl]-1*H*-pyrazole-3-carbonitrile

The title compound, $C_{18}H_8Cl_3F_3N_4$, is a tricyclic imide with an overall U-shape, each of the three rings being planar. The packing is stabilized by π - π interactions.

Received 3 March 2005 Accepted 7 March 2005 Online 18 March 2005

Comment

The molecular structure of the title compound, (I), is shown in Fig. 1, with the atom-numbering scheme. The molecule contains three planar groups, forming an overall U-shape, *viz*. a 2,6-dichloro-4-(trifluoromethyl)phenyl, a pyrazole and a 4-chlorophenyl ring. Bond lengths and angles (Table 1) are in agreement with those observed in similar compounds (Zhong, Yang & Shi, 2005; Zhong, Yang, Shi *et al.*, 2005; Chen *et al.*, 2005). The dihedral angles between the pyrazole and the C1–C6 and C12–C17 benzene rings are 19.02 (16) and 86.98 (8)°, respectively. There are π - π interactions between the pyrazole ring and the C1–C6 benzene ring. In the crystal structure, the molecules stack along the *a* axis, as shown in Fig. 2.

Experimental

Following the method of Hatton *et al.* (1993), reaction of 2,6-dichloro-4-(trifluoromethyl)aniline with a suspension of nitrosylsulfuric acid, followed by reaction with a solution of ethyl 2,3-dicyanopropionate in acetic acid, gave 5-amino-3-cyano-1-[2,6-dichloro-4-(trifluoromethyl)phenyl]pyrazole, which was then reacted with 4-chlorobenzaldehyde and hydrochloric acid in anhydrous ethanol to give the title compound, (I). Single crystals suitable for X-ray analysis were obtained by slow evaporation of an ethyl acetate/petroleum ether (1:2) solution (m.p. 452–454 K). IR (KBr, ν cm⁻¹): 3081, 2238, 2234, 1610, 1507, 1310, 880, 825; ¹H NMR (CDCl₃, δ): 9.08 (*s*, 1H), 8.11 (*s*, 2H), 7.84 (*d*, 2H), 7.50 (*d*, 2H), 7.29 (*s*, 1H); ¹³C NMR (CDCl₃, δ): 166.0 (1C), 153.9 (1C), 140.0 (1C), 137.0 (1C), 135.1 (1C), 134.7 (1C), 132.2 (2C), 130.6 (2C), 128.8 (1C), 127.5 (2C), 127.4 (2C), 123.8 (1C), 114.6 (1C), 99.5 (1C).

© 2005 International Union of Crystallography Printed in Great Britain – all rights reserved

Figure 1

The structure of (I), showing the atomic numbering scheme and displacement ellipsoids at the 50% probability level.

Figure 2

Packing diagram for (I), viewed down the c axis. H atoms have been omitted for clarity.

Crystal data

$C_{18}H_8Cl_3F_3N_4$	Z = 2	
$M_r = 443.64$	$D_x = 1.574 \text{ Mg m}^{-3}$	
Triclinic, $P\overline{1}$	Mo $K\alpha$ radiation	
a = 9.7553 (9) Å	Cell parameters from 3541	
b = 9.7554 (9) Å	reflections	
c = 11.7319 (11) Å	$\theta = 1.9-28.2^{\circ}$	
$\alpha = 68.582 \ (1)^{\circ}$	$\mu = 0.53 \text{ mm}^{-1}$	
$\beta = 68.580 \ (1)^{\circ}$	T = 298 (2) K	
$\gamma = 69.340 \ (1)^{\circ}$	Block, colourless	
$V = 936.06 (15) \text{ Å}^3$	$0.22 \times 0.18 \times 0.15 \text{ mm}$	

Data collection

 $R[F^2 > 2\sigma(F^2)] = 0.050$ wR(F²) = 0.135

S = 1.03

4267 reflections

253 parameters

Bruker SMART APEX area-
detector diffractometer
φ and ω scans
Absorption correction: multi-scan
(SADABS; Bruker, 2002)
$T_{\min} = 0.892, \ T_{\max} = 0.924$
5873 measured reflections
Refinement
Refinement on F^2

 $w = 1/[\sigma^{2}(F_{o}^{2}) + (0.0645P)^{2} + 0.354P]$ where $P = (F_{o}^{2} + 2F_{c}^{2})/3$ $(\Delta/\sigma)_{max} = 0.001$ $\Delta\rho_{max} = 0.33 \text{ e} \text{ Å}^{-3}$ $\Delta\rho_{min} = -0.41 \text{ e} \text{ Å}^{-3}$

 $R_{\rm int} = 0.012$

 $\begin{array}{l} \theta_{\max} = 28.2^{\circ} \\ h = -12 \rightarrow 12 \end{array}$

 $\begin{array}{l} k = -12 \rightarrow 12 \\ l = -15 \rightarrow 9 \end{array}$

4627 independent reflections

3320 reflections with $I > 2\sigma(I)$

Table 1 Selected geometric parameters (Å, °).

H-atom parameters constrained

Cl1-C1	1.740 (2)	N3-C10	1.332 (3)
F1-C18	1.311 (3)	N4-C11	1.133 (3)
N1-C7	1.268 (3)	C4-C7	1.453 (3)
N1-C8	1.387 (3)	C8-C9	1.368 (3)
N2-N3	1.345 (2)	C9-C10	1.392 (3)
N2-C8	1.366 (3)	C10-C11	1.437 (3)
N2-C12	1.424 (2)	C15-C18	1.507 (3)
C7-N1-C8	118.03 (18)	C8-C9-C10	104.57 (19)
N3-N2-C8	113.56 (16)	N3-C10-C9	113.45 (19)
N3-N2-C12	122.26 (17)	N3-C10-C11	120.3 (2)
C8-N2-C12	123.83 (17)	C9-C10-C11	126.2 (2)
C10-N3-N2	102.62 (17)	N4-C11-C10	176.5 (3)
N1-C7-C4	123.2 (2)	C17-C12-N2	119.97 (18)
N2-C8-C9	105.78 (18)	F1-C18-F2	107.3 (3)
N2-C8-N1	118.46 (18)	F1-C18-C15	112.6 (2)
C9-C8-N1	135.8 (2)		

All H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms, with C-H distances set at 0.93 Å and $U_{iso}(H)$ values set at $1.2U_{eq}(C)$.

Data collection: *SMART* (Bruker, 2002); cell refinement: *SAINT* (Bruker, 2002); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 1997); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *XP* (Bruker, 2002); software used to prepare material for publication: *SHELXTL* (Bruker, 2002).

This work was supported by the National Natural Science Foundation of China (No. 20272043) and the Natural Science Foundation of Zhejiang Province (No. M203001).

References

Bruker (2002). SMART, SAINT, SADABS, SHELXTL and XP. Bruker AXS Inc., Madison, Wisconsin, USA.

- Chen, D., Yang, Z., Zhong, P. & Hu, M. (2005). Acta Cryst. E61, o702-o703.
- Hatton, L. R., Bunain, B. G., Hawkins, D. W., Parnell, E. W., Pearson C. J. & Roberts, D. A. (1993). US Patent No. 5 232 940.
- Sheldrick, G. M. (1997). SHELXL97 and SHELXS97. University of Göttingen, Germany.
- Zhong, P., Yang, Z. & Shi, Q. (2005). Acta Cryst. E61, 0786-0787.

Zhong, P., Yang, Z., Shi, Q., Li, S. & Tang, R. (2005). Acta Cryst. E61, 0559–0560.