Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Zhiping Yang, \ddagger Ping Zhong,* Qian Shi, Riyuan Tang and Shuyan Li

Department of Chemistry, Wenzhou Normal College, 325027 Wenzhou, People's Republic of China
£ Present address: Zhangzhou Vocational and Technical College, 363000 Zhangzhou, People's Republic of China

Correspondence e-mail: zhongp0512@163.com

Key indicators

Single-crystal X-ray study
$T=298 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.004 \AA$
R factor $=0.050$
$w R$ factor $=0.135$
Data-to-parameter ratio $=16.9$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2005 International Union of Crystallography Printed in Great Britain - all rights reserved

5-\{[(4-Chlorophenyl)methylene]amino\}-1-[2,6-dichloro-4-(trifluoromethyl)phenyl]-1H-pyrazole-3-carbonitrile

The title compound, $\mathrm{C}_{18} \mathrm{H}_{8} \mathrm{Cl}_{3} \mathrm{~F}_{3} \mathrm{~N}_{4}$, is a tricyclic imide with an overall U-shape, each of the three rings being planar. The packing is stabilized by $\pi-\pi$ interactions.

Comment

The molecular structure of the title compound, (I), is shown in Fig. 1, with the atom-numbering scheme. The molecule contains three planar groups, forming an overall U-shape, viz. a 2,6-dichloro-4-(trifluoromethyl)phenyl, a pyrazole and a 4 -chlorophenyl ring. Bond lengths and angles (Table 1) are in agreement with those observed in similar compounds (Zhong, Yang \& Shi, 2005; Zhong, Yang, Shi et al., 2005; Chen et al., 2005). The dihedral angles between the pyrazole and the C1C 6 and $\mathrm{C} 12-\mathrm{C} 17$ benzene rings are 19.02 (16) and 86.98 (8) ${ }^{\circ}$, respectively. There are $\pi-\pi$ interactions between the pyrazole ring and the C1-C6 benzene ring. In the crystal structure, the molecules stack along the a axis, as shown in Fig. 2.

(I)

Experimental

Following the method of Hatton et al. (1993), reaction of 2,6-dichloro-4-(trifluoromethyl)aniline with a suspension of nitrosylsulfuric acid, followed by reaction with a solution of ethyl 2,3-dicyanopropionate in acetic acid, gave 5-amino-3-cyano-1-[2,6-dichloro-4-(trifluoromethyl)phenyl]pyrazole, which was then reacted with 4-chlorobenzaldehyde and hydrochloric acid in anhydrous ethanol to give the title compound, (I). Single crystals suitable for X-ray analysis were obtained by slow evaporation of an ethyl acetate/petroleum ether (1:2) solution (m.p. 452-454 K). IR ($\mathrm{KBr}, v \mathrm{~cm}^{-1}$): 3081, 2238, 2234, $1610,1507,1310,880,825 ;{ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, \delta\right): 9.08(s, 1 \mathrm{H}), 8.11(s$, $2 \mathrm{H}), 7.84(d, 2 \mathrm{H}), 7.50(d, 2 \mathrm{H}), 7.29(s, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, \delta\right)$: 166.0 (1C), 153.9 (1C), 140.0 (1C), 137.0 (1C), 135.1 (1C), 134.7 (1C), 132.2 (2C), 130.6 (2C), 128.8 (1C), 127.5 (2C), 127.4 (2C), 123.8 (1C), 114.6 (1C), 99.5 (1C).

Figure 1
The structure of (I), showing the atomic numbering scheme and displacement ellipsoids at the 50% probability level.

Figure 2
Packing diagram for (I), viewed down the c axis. H atoms have been omitted for clarity.

Crystal data

$\mathrm{C}_{18} \mathrm{H}_{8} \mathrm{Cl}_{3} \mathrm{~F}_{3} \mathrm{~N}_{4}$	$Z=2$
$M_{r}=443.64$	$D_{x}=1.574 \mathrm{Mg} \mathrm{m}^{-3}$
Triclinic, $P \overline{1}$	Mo $K \alpha$ radiation
$a=9.7553(9) \AA$	Cell parameters from 3541
$b=9.7554(9) \AA$	reflections
$c=11.7319(11) \AA$	$\theta=1.9-28.2^{\circ}$
$\alpha=68.582(1)^{\circ}$	$\mu=0.53 \mathrm{~mm}^{-1}$
$\beta=68.580(1)^{\circ}$	$T=298(2) \mathrm{K}$
$\gamma=69.340(1)^{\circ}$	Block, colourless
$V=936.06(15) \AA^{\circ}$	$0.22 \times 0.18 \times 0.15 \mathrm{~mm}$

Data collection

Bruker SMART APEX areadetector diffractometer
φ and ω scans
Absorption correction: multi-scan
(SADABS; Bruker, 2002)
$T_{\text {min }}=0.892, T_{\text {max }}=0.924$
5873 measured reflections

> 4627 independent reflections
> 3320 reflections with $I>2 \sigma(I)$
> $R_{\text {int }}=0.012$
> $\theta_{\max }=28.2^{\circ}$
> $h=-12 \rightarrow 12$
> $k=-12 \rightarrow 12$
> $l=-15 \rightarrow 9$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.050$
$w R\left(F^{2}\right)=0.135$
$S=1.03$
4267 reflections
253 parameters
H -atom parameters constrained

$$
\begin{gathered}
w=1 /\left[\sigma^{2}\left(F_{o}^{2}\right)+(0.0645 P)^{2}\right. \\
\quad+0.354 P] \\
\text { where } P=\left(F_{o}^{2}+2 F_{c}^{2}\right) / 3 \\
(\Delta / \sigma)_{\max }=0.001 \\
\Delta \rho_{\max }=0.33 \mathrm{e}^{-3} \AA^{-3} \\
\Delta \rho_{\min }=-0.41 \mathrm{e}^{-3}
\end{gathered}
$$

Table 1
Selected geometric parameters $\left(\AA^{\circ},^{\circ}\right)$.

Cl1-C1	$1.740(2)$	$\mathrm{N} 3-\mathrm{C} 10$	$1.332(3)$
$\mathrm{F} 1-\mathrm{C} 18$	$1.311(3)$	$\mathrm{N} 4-\mathrm{C} 11$	$1.133(3)$
$\mathrm{N} 1-\mathrm{C} 7$	$1.268(3)$	$\mathrm{C} 4-\mathrm{C} 7$	$1.453(3)$
$\mathrm{N} 1-\mathrm{C} 8$	$1.387(3)$	$\mathrm{C} 8-\mathrm{C} 9$	$1.368(3)$
$\mathrm{N} 2-\mathrm{N} 3$	$1.345(2)$	$\mathrm{C} 9-\mathrm{C} 10$	$1.392(3)$
$\mathrm{N} 2-\mathrm{C} 8$	$1.366(3)$	$\mathrm{C} 10-\mathrm{C} 11$	$1.437(3)$
$\mathrm{N} 2-\mathrm{C} 12$	$1.424(2)$	$\mathrm{C} 15-\mathrm{C} 18$	$1.507(3)$
$\mathrm{C} 7-\mathrm{N} 1-\mathrm{C} 8$	$118.03(18)$	$\mathrm{C} 8-\mathrm{C} 9-\mathrm{C} 10$	$104.57(19)$
N3-N2-C8	$113.56(16)$	$\mathrm{N} 3-\mathrm{C} 10-\mathrm{C} 9$	$113.45(19)$
N3-N2-C12	$122.26(17)$	$\mathrm{N} 3-\mathrm{C} 10-\mathrm{C} 11$	$120.3(2)$
$\mathrm{C} 8-\mathrm{N} 2-\mathrm{C} 12$	$123.83(17)$	$\mathrm{C} 9-\mathrm{C} 10-\mathrm{C} 11$	$126.2(2)$
$\mathrm{C} 10-\mathrm{N} 3-\mathrm{N} 2$	$102.62(17)$	$\mathrm{N} 4-\mathrm{C} 11-\mathrm{C} 10$	$176.5(3)$
$\mathrm{N} 1-\mathrm{C} 7-\mathrm{C} 4$	$123.2(2)$	$\mathrm{C} 17-\mathrm{C} 12-\mathrm{N} 2$	$119.97(18)$
N2-C8-C9	$105.78(18)$	$\mathrm{F} 1-\mathrm{C} 18-\mathrm{F} 2$	$107.3(3)$
N2-C8-N1	$118.46(18)$	$\mathrm{F} 1-\mathrm{C} 18-\mathrm{C} 15$	$112.6(2)$
$\mathrm{C} 9-\mathrm{C} 8-\mathrm{N} 1$	$135.8(2)$		

All H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms, with $\mathrm{C}-\mathrm{H}$ distances set at $0.93 \AA$ and $U_{\text {iso }}(\mathrm{H})$ values set at $1.2 U_{\text {eq }}(\mathrm{C})$.

Data collection: SMART (Bruker, 2002); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: XP (Bruker, 2002); software used to prepare material for publication: SHELXTL (Bruker, 2002).

This work was supported by the National Natural Science Foundation of China (No. 20272043) and the Natural Science Foundation of Zhejiang Province (No. M203001).

References

Bruker (2002). SMART, SAINT, SADABS, SHELXTL and XP. Bruker AXS Inc., Madison, Wisconsin, USA.
Chen, D., Yang, Z., Zhong, P. \& Hu, M. (2005). Acta Cryst. E61, o702-o703.
Hatton, L. R., Bunain, B. G., Hawkins, D. W., Parnell, E. W., Pearson C. J. \& Roberts, D. A. (1993). US Patent No. 5232940.
Sheldrick, G. M. (1997). SHELXL97 and SHELXS97. University of Göttingen, Germany.
Zhong, P., Yang, Z. \& Shi, Q. (2005). Acta Cryst. E61, o786-o787.
Zhong, P., Yang, Z., Shi, Q., Li, S. \& Tang, R. (2005). Acta Cryst. E61, o559o560.

